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Abstract

Aqueous CH;ReOsbipy, which is formed by the addition of 2,2-bipyridine (bipy) to a solution of CH;ReO;, displays a long-wavelength
(CH;~ —bipy) ligand-to-ligand charge transfer (LLCT) band at A, = 360 nm. Light absorption by this band leads to photolysis according
to the equation CH;ReO;bipy + H,O — CH, +bipyH ™" + ReO,~ (¢ =0.28 at A,, =366 nm). As shown in a previous study, the photolysis of
the parent compound CH;ReQO; proceeds in a similar manner to the bipy adduct, but requires shorter wavelength irradiation corresponding to

(CH;™ —>Re"Y") ligand-to-metal charge transfer (LMCT) excitation.
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1. Introduction

Organometallic oxides containing transition metals in high
oxidation states have attracted much attention in recent years
[1]. Despite this general interest, the photochemistry of these
compounds is still largely unexplored although initial obser-
vations have revealed intriguing details [2,3]. Compounds
of the type RReV"0,, with R~ =CH;~, C,Hs~ and related
carbanions, are characterized by reactive ligand-to-metal
charge transfer (LMCT) states which induce photoredox
processes in the primary photochemical step [2,3]. Owing to
the d” electron configuration at Re¥", excited states of differ-
ent origin are not available to RReO;. However, since
CH;ReO; can casily expand its coordination sphere [4-9],
the attachment of suitable ligands should provide ready
access to other excited states. This approach may lead to a
change in photochemistry. Recently, it has been demonstrated
that, on addition of [Fe(CN)(]*~, the binuclear complex
[CH;ReY"O,u-NCFe"(CN) 1%~ is formed, which under-
goes photoredox  decomposition on  (Fe"->Re"")
metal-to-metal charge transfer (MMCT) excitation [ 10]. In
contrast with this observation, it is also feasible that the coor-
dination of an appropriate new ligand may cause intramolec-
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ular sensitization of the photochemistry of CH;ReO; without
changing the reaction pattern. We explored this possibility
and selected the 2,2'-bipyridine (bipy) adduct of CH;RcO;
for the present study [5,7-9]. While CH;ReQ; 1s colourless,
CH;ReO;bipy is yellow. It is shown that the photoreactivity
of CH;ReO; [2.3] is preserved in the bipy adduct. However,
in comparison with the parent compound, the photolysis of
CH,ReO;bipy can be sensitized by longer wavelength 1rra-
diation. This is possible because the absorption spectrum of
the bipy adduct displays a new low-energy band which is
assigned to a (CH; ™ —bipy) ligand-to-ligand charge trans-
fer (LLCT) transition, In this context, it is interesting that
recent studies have demonstrated that LLCT cxcited states
play asignificantrole in the spectroscopy and photochemistry
of coordination compounds [ 11]. In the case of organome-
tallic complexes, the importance of LLCT states, which
involve the promotion of an electron from a carbanion ligand
to an acceptor such as bipy or porphyvrin, 1s just being rec-
ognized [ 12-18].

2. Experimental section
2.1. Materials

The compound methyltrioxorhenium was purchased from
Aldrich (Nr. 41, 291-0) and used as received. Acetonitrile
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was of spectrograde quality. The water used was triply dis-
tilled.

2.2. Photolyses

The light source was an Osram HBO 100 W/2 or Hanovia
Xe/Hg 977 B-1 (1 kW) lamp. Monochromatic light was
obtained using Schott PIL/IL interference filters (313, 333,
366 and 405 nm) or a Schoeffel GM 250/1 high-intensity
monochromator (bandwidth, 23 nm). The photolyses were
carried out in solutions of water and CH;CN-H,O mixtures
(9:1) in 1 cm spectrophotometer cells at room temperature.
Solutions were air saturated since deaeration did not affect
the results. The progress of photolysis was monitored by UV—
visible spectrophotometry. The photoproducts were identi-
fied by their absorption spectra. For quantum yield
determinations, complex concentrations giving essentially
complete light absorption were used. The total amount of
photolysis was limited to less than 5% to avoid light absorp-
tion by the photoproduct. The absorbed light intensities were
determined by a Polytec pyroelectric radiometer which was
calibrated and equipped with an RkP-345 detector.

2.3. Instrumentation

Absorption spectra were recorded on a Hewlett Packard
8452A diode array spectrometer or a Uvikon 860 double-
beam spectrophotometer. The progress of photolysis was
monitored by UV-visible spectral measurements. Gaseous
products (CH, and C,Hg) were identified by gas chromatog-
raphy (Perkin Elmer 8500, headspace sampler HS-6).

3. Results

The electronic spectrum of CH;ReO;bipy in CH,CN dis-
plays absorption bands at A, =360 nm (e=260 1 mol '
em™'), 306 nm (€=3700 1 mol™' cm™'), 280 nm
(e=167001mol~'cm™!) and 238 nm (=16 0001 mol '
cm™'). Solutions of CH3;ReO;bipy were also generated in
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Fig. 1. Electronic absorption spectra of 2.0X 107* M CH3ReO; and 2.0 X
107*M bipyridine in water as separate solutions (a) and as a mixture (b)
(1 cm tandem cell).
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Fig. 2. Spectral changes during the photolysis of 1.22X 107* M CH;Re-
O;bipy in CH;CN-H,0 (9 : 1) at room temperature after 0 min (a) and 30
min (e) irradiation time with A,, =405 nm; 1 cm cell.

situ by mixing equimolar amounts of bipy and CH,;ReQO; in
acetonitrile or water. A comparison of the spectra of the
separate components ( which are colourless) and their mix-
ture (Fig. 1) reveals immediately the appearance of a new
long-wavelength absorption at A, =360 nm which causes
the yellow colour of CH;ReO;bipy. This adduct is not very
stable. It dissociates partially on dilution of the aqueous solu-
tion as indicated by the deviation of the 360 nm band from
the Lambert—Beer law. The release of bipy is also accompa-
nied by the appearance of the blue fluorescence (A, =325
nm) of aqueous bipy.

The photolysis of CH3ReO;bipy is associated with spectral
changes as shown in Fig. 2. Simultaneously, the pH of the
solution decreases. At A,,, =305 nm, a new band appears
which is attributed to protonated bipy (bipyH™, A, = 306
nm, €=8200 1 mol~' cm™!'). As a further photoproduct,
ReO,” is formed. The absorption spectrum of perrhenate
displays a band at A, =235 nm (€=32001mol~'cm™})
which is characterized by a vibrational structure [2]. This
can also be recognized in the spectrum of the photolysed
solution, although it is somewhat obscured by other photo-
products. This vibrational structure becomes more visible
when the photolysis is carried out in acetonitrile containing
10% water (Fig. 2).

Finally, methane and traces of ethane are identified as
additional photoproducts by gas chromatography. The pho-
tochemical loss of CH3;ReO;bipy was monitored by meas-
uring the decrease in the optical density at A =360 nm. The
disappearance quantum yield of CH;ReO;bipy is ¢p=0.28 at
Air =366 nm.

4. Discussion

The electronic spectrum of CH;ReO; is characterized by a
long-wavelength absorption at A_,, =260 nm, which has
been assigned to an LMCT transition involving the promotion
of an electron from the CH; ™ ligand to the d® metal ReV"
[2]. LMCT excitation of aqueous CH;ReQ; induces a hom-
olytic splitting of the Re~C o bond in the primary photo-
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chemical step. Secondary processes yield methane (and some
ethane) and perrhenic acid as final products according to the
overall stoichiometry [2,3]

CH,;ReO; + H,0 ——>s CH, +H"ReO,"
LMCT

CH;ReO; can easily expand its coordination sphere and
accept an additional ligand [4-9]. A variety of such adducts
CH;ReO;L., (n=1 or 2), including CH;ReOsbipy [5,7-9],
have been prepared and characterized. While the
CH;~ —Re"" LMCT transition of CH;ReQ5 should be pre-
served in these adducts, additional electronic transitions
depending on the nature of L may be introduced. In the case
of L=bipy, an LLCT transition from the methyl carbanion
1o bipy should occur in analogy with several other complexes
which contain a metal-carbon ¢ bond and an acceptor ligand
with low-energy 7% orbitals (12-18]. While CH;ReO; is
colourless, its bipy adduct is yellow. The long-wavelength
band of CH;ReO;bipy at A, = 360 nm which extends to the
visible region is logically assigned to this LLCT transition.
The absorptions at shorter wavelength are attributed to LMCT
and bipy (7,7*) inner ligand (IL) transitions. IL absorptions
of bipy appear at wavelengths below 320 nm [19,20]. A
detailed assignment of the shorter wavelength bands of
CH;ReO;bipy was not attempted since it is not relevant to
this discussion.

The photolysis of CH,ReO;bipy proceeds according to the
overall stoichiometry

CH,ReO,bipy + H,0 — CH, + bipyH *ReO, -

Product formation is assumed to take place in several con-
secutive steps

CH; Re""O;bipy 2 {"CH,/Re"" Q4 (bipy ~ ) } D

{"CH+/Re¥"O,4(bipy ~) }* —> {'CH;/ReV'O,bipy}*-MCT
. 4 H20 ‘

{.CHg/RCVl()}blpy}* — CH,+H*ReO,” +bipy

LLCT excitation involves the promotion of an electron from
the Re—C o bond into the #™* orbital of bipy. From the bipy
ligand, this clectron is transferred to Re¥" thus generating an
LMCT excited state. This LMCT state finally yields stable
products in close analogy with the photolysis of the parent
complex CH;ReO; [2,3]. The formation of small amounts
of ethane takes place in a less efficient side reaction.

In terms of a potential energy diagram (Fig. 3), the LLCT
excited state of CH;ReO;bipy is deactivated to the reactive
LMCT state. It is assumed that, in the LMCT state, the com-
plex undergoes a larger distortion than in the LLCT state
because the population of the Re-O #™* orbital (LMCT
acceptor orbital) [2] affects the complex structure much
more than the population of a ligand-localized 7* orbital.
Accordingly, the optical LLCT transitionrequires less energy
than direct LMCT excitation (Fig. 3). As a result, the pho-
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Fig. 3. Potential energy diagram of CH,ReV"0bipy.

tolysis of CH;3;ReO; can be sensitized at longer wavelength
via the formation of its bipy adduct and the concomitant
introduction of a new low-energy excited state. In this con-
text, it is interesting that the photolysis of methylcobalamin
proceeds by a similar mechanism [ 18].
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